Carbon Dioxide Chemistry of a Binuclear Iridium(0) Complex. Rapid and Reversible Oxygen Atom Transfer from Carbonate

Mark K. Reinking, Jinfeng Ni, Phillip E. Fanwick, ${ }^{\dagger}$ and Clifford P. Kubiak ${ }^{*, 1}$

Department of Chemistry, Purdue University West Lafayette, Indiana 47907
 Received February 13, 1989

We report the activation of CO_{2} by a binuclear complex of $\operatorname{Ir}(0)$. The activation and reduction of carbon dioxide are areas of potential importance for artificially recycling the products of combustion and respiration. ${ }^{2,3}$ The activation of CO_{2} may be accomplished by (i) chemical, ${ }^{2-18}$ (ii) electrochemical, ${ }^{19-21}$ or (iii) photochemical ${ }^{22-26}$ means. A serious impediment to chemical or electrochemical reduction of CO_{2}, however, is the disproportionation of the single-electron-transfer product, $\mathrm{CO}_{2}{ }^{--}$(eq 1).

$$
\begin{equation*}
2 \mathrm{CO}_{2} \cdot-\xrightarrow{k_{\mathrm{d}}} \mathrm{CO}+\mathrm{CO}_{3}^{2-} \tag{1}
\end{equation*}
$$

Reactions of low-valent transition-metal complexes with CO_{2} often result in the production of 1 equiv of $\mathrm{CO}_{3}{ }^{2-}$ for each equivalent of CO_{2} reduced to $\mathrm{CO} .{ }^{11-14,16}$ The resulting carbonate ligands are usually unreactive end products that serve to halve the overall efficiency of CO_{2} reduction. We describe herein the preparation of the new iridium complexes $\mathrm{Ir}_{2}(\mathrm{CO})_{4}(\mathrm{dmpm})_{2}(1)(\mathrm{dmpm}=$ bis(dimethylphosphino)methane) and $\mathrm{Ir}_{2}(\mathrm{CO})_{3}(\mathrm{dmpm})_{2}(2)$ and the reaction of 2 with $\mathrm{CO}_{2}(1)$ to form the μ-carbonate complex $\mathrm{Ir}_{2}\left(\mu-\mathrm{CO}_{3}\right)(\mathrm{CO})_{2}(\mathrm{dmpm})_{2}(3)$. The carbonate ligand of complex 3 shows unprecedented oxygen atom transfer reactivity and has been found to undergo rapid and reversible oxygen atom transfer to CO .

The reaction of $\mathrm{Ir}_{2}(\mathrm{CO})_{4}(\mathrm{dmpm})_{2}(\mathbf{1})^{27}$ with $\mathrm{Me}_{3} \mathrm{NO}$ produces
${ }^{\dagger}$ Address correspondence pertaining to crystallographic studies to this author.
(1) Research Fellow of the Alfred P. Sloan Foundation, 1987-1989.
(2) Eisenberg, R.; Hendriksen, D. E. Adv. Catal. 1979, 28, 79.
(3) Palmer, D. A.; van Eldik, R. Chem. Rev. 1983, 83, 651.
(4) Darensbourg, D. J.; Kudaroski, R. A. Adv. Organomet. Chem. 1983, 22, 129.
(5) Inoue, S.; Koinuma, H. Rev. Inorg. Chem. 1984, 6, 291.
(6) Lundquist, E. G.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1986, 108, 8309.
(7) Lee, G. R.; Cooper, N. J. Organometallics 1985, 4, 1467.
(8) DeLaet, D. L.; del Rosario, R.; Fanwick, P. E.; Kubiak, C. P. J. Am. Chem. Soc. 1987, 109, 754.
(9) Wu, J.; Fanwick, P. E.; Kubiak, C. P. Organometallics 1987, 6, 1805.
(10) Calabrese, J. C.; Herskovitz, T.; Kinney, J. B. J. Am. Chem. Soc. 1983, $105,5914$.
(11) Lee, G. R.; Maher, J. M.; Cooper, N. J. J. Am. Chem. Soc. 1987, 109, 2956.
(12) Evans, G. O.; Walter, W. F.; Mills, D. R.; Streit, C. A. J. Organomet. Chem. 1978, 144, C34.
(13) Maher, J. M.; Cooper, N. J. J. Am. Chem. Soc. 1980, 102, 7606.
(14) Chatt, J.; Kubota, M.; Leigh, G. J.; March, T. C.; Mason, R.; Yarrow, D. J. J. Chem. Soc., Chem. Commun. 1974, 1033.
(15) Bryan, J. C.; Geib, S. J. Rheingold, A. L.; Meyer, J. M. J. Am. Chem. Soc. 1987, 109, 2826.
(16) Fachinetti, G.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Am. Chem. Soc. 1979, $101,1767$.
(17) Nicholas, K. M. J. Organomet. Chem. 1980, 188, Cl0.
(18) Maher, J. M.; Lee, G. R.; Cooper, N. J. J. Am. Chem. Soc. 1982, I04, 6797. Lee, G. R.; Cooper, N. J. Organometallics 1985, 4, 1467.
(19) Fisher, B. J.; Eisenberg, R. J. Am. Chem. Soc. 1980, 102, 7361.
(20) Bruce, M. R. M.; Megehee, E.; Sullivan, B. P.; Thorp, H.; O'Toole, T. R.; Downard A.; Meyer, T. J. Organometallics 1988, 7, 238 and references therein.
(21) Frese, K. W.; Summers, D. P.; Cinibulk, M. J. Electrochem. Soc. 1988, $135,264$.
(22) DeLaet, D. L.; Fanwick, P. E.; Kubiak, C. P. J. Chem. Soc., Chem. Commun. 1987, 1412.
(23) (a) Hawecker, J.; Lehn, J.-M.; Zeissel, R. J. Chem. Soc., Chem. Commun. 1983, 536. (b) Lehn, J.-M.; Zeissel, R. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 701.
(24) Kutal, C.; Corbin, A. J.; Ferraudi, G. Organometallics 1987, 6, 553.
(25) Belmore, K. A.; Vanderpool, R. A.; Tsai, J.-C.; Khan, M. A.; Nicholas, K. M. J. Am. Chem. Soc. 1988, I10, 2004.
(26) Lemke, F. R.; DaLaet, D. L.; Gao, J.; Kubiak, C. P. J. Am. Chem. Soc. 1988, 110, 6904.

Figure 1. ORTEP drawing of $\mathrm{Ir}_{2}\left(\mathrm{CO}_{3}\right)(\mathrm{CO})_{2}(\mathrm{dmpm})_{2}$ (3). Selected bond distances and angles: $\operatorname{Ir}(1)-\operatorname{Ir}(2), 2.965$ (1) \AA; $\operatorname{Ir}(1)-\mathrm{O}(31), 2.08$ (1) \AA; $\operatorname{Ir}(2)-\mathrm{O}(32), 2.09(1) \AA ; \mathrm{O}(31)-\mathrm{C}(30), 1.29$ (3) $\AA ; \mathrm{O}(32)-\mathrm{C}(30), 1.29$ (3) $\AA ; \mathrm{C}(30)-\mathrm{O}(33), 1.27$ (3) \AA; Ir-P(av), 2.311 (6) $\AA ; \mathrm{O}(31)-\mathrm{C}-$ (30)- $\left.\mathrm{O}(32), 123(2)^{\circ} ; \mathrm{O}(31)-\mathrm{C}(30)-\mathrm{O}(33), 118(2)\right)^{\circ} ; \mathrm{O}(32)-\mathrm{C}(30)-$ $\mathrm{C}(33), 119(2)^{\circ} ; \mathrm{P}(11)-\operatorname{Ir}(1)-\mathrm{P}(12), 176.4$ (2) ${ }^{\circ} ; \mathrm{P}(21)-\operatorname{Ir}(2)-\mathrm{P}(22)$, $171.4(2)^{\circ} ; \mathrm{O}(32)-\operatorname{Ir}(2)-\mathrm{C}(21), 177.8(9)^{\circ} ; \mathrm{O}(31)-\operatorname{Ir}(1)-\mathrm{C}(11), 176.4$ (7) ${ }^{\circ}$.

1 equiv of CO_{2} and $\mathrm{Ir}_{2}(\mathrm{CO})_{3}(\mathrm{dmpm})_{2}$ (2) ${ }^{28}$ Complex 2 exhibits $\nu(\mathrm{CO})$ bands at 1902 (s) and $1846 \mathrm{~cm}^{-1}$, indicative of terminal and semibridging CO ligands, respectively. The presence of two $\nu(\mathrm{P}-\mathrm{C})$ dmpm bands at $942(\mathrm{~m})$ and $929(\mathrm{~m}) \mathrm{cm}^{-1}$ is a signature of a cis,cis or cis,trans (dmpm) ${ }_{2}$ conformation. ${ }^{29}$ The variabletemperature ${ }^{31} \mathrm{P}\left\{{ }^{i} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ shows a single resonance at -42.9 ppm at $25^{\circ} \mathrm{C}$, coalescence at $-10^{\circ} \mathrm{C}$, and an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ multiplet extending from -22.3 to $-61.4 \mathrm{ppm}\left(J_{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}}=74.3 \mathrm{~Hz}\right.$) at $-70^{\circ} \mathrm{C}$. The exchange rate at $-10^{\circ} \mathrm{C}$ is calculated to be extremely rapid, $5000 \mathrm{~s}^{-1}$, with a free energy of coalescence of $11 \mathrm{kcal} / \mathrm{mol} .{ }^{31,32}$ The dynamic ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right)$ data together with IR evidence in the $\nu(\mathrm{P}-\mathrm{C})$ region establish a cis, trans diphosphine conformation for 2. These data suggest that 2 possesses the "non-A-frame" $\mathrm{M}_{2} \mathrm{~L}_{7}$ geometry, analogous to the structurally characterized complex $\mathrm{Rh}_{2}(\mathrm{CO})_{3}(\mathrm{dppm})_{2} \cdot{ }^{30}$

2
(27) Complex 1 was prepared from $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(1.41 \mathrm{~g}, 2.10 \mathrm{mmol})$ and dmpm ($0.57 \mathrm{~g}, 4.20 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ in toluene. The resulting cream-colored slurry was stirred for 5 min at which time CO was added, causing the mixture to turn dark red. The reaction was warmed to room temperature and the solution was stirred 2 h , resulting in a pale yellow solution and a light yellow solid. This product was reduced in situ over an excess of $\mathrm{Na} / \mathrm{Hg}$ under an atmosphere of CO for 5 days. The yellow solution was filtered and reduced in volume. Precipitation of yellow crystalline material was accomplished by slow addition of hexanes to give 1.34 g (83% yield) of $\mathrm{Ir}_{2}(\mathrm{CO})_{4}(\mathrm{dmpm})_{2}$ (1). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{P}_{4} \mathrm{O}_{4} \mathrm{Ir}_{2}$: C, 21.87; $\mathrm{H}, 3.68$. Found: $\mathrm{C}, 21.94 ; \mathrm{H}, 3.64$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 3.46(\mathrm{~m}, 4 \mathrm{H}), \delta 1.80(\mathrm{~s}, 24 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{C}_{6} \mathrm{D}_{5}\right): \delta-65.4(\mathrm{~s})$. IR $\left(\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{5}\right): \nu(\mathrm{CO}) 1956(\mathrm{~m}), 1930(\mathrm{~s}), 1890$ (s), 1865 (w). Complex 1 was also characterized by a single-crystal X-ray diffraction study, the results of which will be reported separately.
(28) Complex 2 was prepared from $1(0.025 \mathrm{~g}, 0.32 \mathrm{mmol})$ and $\mathrm{Me}_{3} \mathrm{NO}$ $(0.024 \mathrm{~g}, 0.32 \mathrm{mmol})$ at $70^{\circ} \mathrm{C}$ in toluene. The solvent was removed to give 0.20 g (83% yield) of red-brown $\mathrm{Ir}_{2}(\mathrm{CO})_{3}(\mathrm{dmpm})_{2}(2)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{P}_{4} \mathrm{O}_{3} \mathrm{Ir}_{2}$: C, $21.08 ; \mathrm{H}, 3.82$. Found: $\mathrm{C}, 21.41 ; \mathrm{H}, 4.06 .{ }^{1} \mathrm{H} N M R$ $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 2.63(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 24 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{〔} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-42.9(\mathrm{~s})$. IR (KBr): $\nu(\mathrm{CO}) 1902(\mathrm{vs}), 1846(\mathrm{~m}) ; \nu(\mathrm{P}-\mathrm{C}) 942(\mathrm{~m}), 929(\mathrm{~m})$.
(29) (a) Wu, J.; Fanwick, P. E.; Kubiak, C. P. J. Am. Chem. Soc. 1988, 110, 1319. (b) Wu, J.; Fanwick, P. E.; Kubiak, C. P. J. Am. Chem. Soc., in press.
(30) Woodcock, C.; Eisenberg, R. Inorg. Chem. 1985, 24, 1287
(31) Binsch, G.; Kessler, H. Angew. Chem., Int. Ed. Engl. 1980, 19, 411.
(32) Sandstrom, J. Dynamic NMR Spectroscopy; Academic Press: New York, 1982.

Scheme I. Reversible Carbonate Oxygen Atom Transfer from $\mathbf{3}$ to CO

Complex 2 reacts with both CO_{2} and CO . The reaction of 2 with liquid CO_{2} affords a mixture of 1 and the new carbonate complex $\mathrm{Ir}_{2}\left(\mathrm{CO}_{3}\right)(\mathrm{CO})_{2}(\mathrm{dmpm})_{2}(3) .{ }^{36}$ The reaction of 2 with 1 equiv of CO leads back to 1 . The structure of 3 was determined by single-crystal X-ray diffraction. ${ }^{37}$ An ORTEP drawing of 3 together with selected bond angles and distances appears in Figure 1. Complex $\mathbf{3}$ possesses an essentially planar bridging carbonate, torsionally canted at 20° with respect to the $\mathrm{Ir}-\mathrm{Ir}$ vector. The Ir-Ir separation of 2.965 (1) \AA, deep purple color, and overall structure are consistent with a weakly Ir \cdots Ir interacting, $d^{8}-d^{8}$ face-to-face bi-square-planar system.

The formation of $\mathbf{3}$ and 1 in the reaction of 2 with $\mathrm{CO}_{2}(1)$ appears to result from reductive disproportionation of $2 \mathrm{CO}_{2}$ to $\mathrm{CO}_{3}{ }^{2-}$ and CO (eq 2). Isolated yields of 3 are typically $\sim 40 \%$,

1

3
indicating that some of the CO produced by CO_{2} disproportionation is lost to the vapor phase in equilibrium with CO_{2} liquid under reaction conditions.

The reaction of 2 with ${ }^{13} \mathrm{CO}_{2}\left(99 \%{ }^{13} \mathrm{C}\right)$ leads to a surprising result. Comparison of the IR bands of $\mathbf{3}$ produced from ${ }^{13} \mathrm{CO}_{2}$ with those of $\mathbf{3}$ from CO_{2} (natural abundance) reveals new $v\left({ }^{13} \mathrm{CO}\right)$ at $1896,1878,1523$, and $1226 \mathrm{~cm}^{-1}$. The disproportionation of ${ }^{13} \mathrm{CO}_{2}$ to ${ }^{13} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}_{3}$ was verified by ${ }^{13} \mathrm{C}\left[{ }^{1} \mathrm{H}\right\}$ NMR. The sample of $\mathbf{3}$ prepared from ${ }^{13} \mathrm{CO}_{2}$ showed ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals at $\delta 177\left({ }^{13} \mathrm{CO}\right)$ and $\delta 164\left({ }^{13} \mathrm{CO}_{3}\right)$. However, there are also

[^0]Table I. Comparison of IR Data for 3 Prepared from CO_{2} vs ${ }^{13} \mathrm{CO}_{2}$ (cm^{-1})

$3\left(\mathrm{CO}_{2}\right)$	$3\left({ }^{13} \mathrm{CO}_{2}\right)$	assignment ${ }^{38}$
$1942(\mathrm{vs})$	$1942(\mathrm{vs})$	$\nu\left({ }^{12} \mathrm{CO}\right)$
	$1896(\mathrm{~m})$	$\nu\left({ }^{13} \mathrm{CO}\right)$
$1920(\mathrm{sh})$	$1920(\mathrm{w})$	$\nu\left({ }^{12} \mathrm{CO}\right)$
	$1878(\mathrm{~m})$	$\nu\left({ }^{13} \mathrm{CO}\right)$
$1561(\mathrm{vs})$	$1561(\mathrm{~s})$	$\nu\left({ }^{12} \mathrm{CO}_{3}\right)$
	$1523(\mathrm{~s})$	$\nu\left({ }^{13} \mathrm{CO}_{3}\right)$
$1257(\mathrm{~m})$	$1257(\mathrm{~m})$	$\nu\left({ }^{12} \mathrm{CO}_{3}\right)$
	$1226(\mathrm{~m})$	$\nu\left({ }^{13} \mathrm{CO}_{3}\right)$

intense $\nu\left({ }^{12} \mathrm{CO}_{3}\right)$ bands evident at 1561 (s) and $1257(\mathrm{~m}) \mathrm{cm}^{-1}$ (Table I). ${ }^{38}$ The key observation from this labeling experiment is that a significant portion of the $\mathrm{CO}_{3}{ }^{2-}$ groups contain ${ }^{12} \mathrm{C}$! This suggests that CO from 2 is used to produce some of the $\mathrm{CO}_{3}{ }^{2-}$. The significance of this result lies in the fact that the products are not consistent with simple disproportionation of two ${ }^{13} \mathrm{CO}_{2}$ molecules to produce ${ }^{13} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}_{3}{ }^{2-}$.

Our results suggest that the $\mu-\mathrm{CO}_{3}$ group of 3 undergoes reversible oxygen atom transfers with CO. This conclusion is supported by additional experimental evidence. A mixture of 1 and $\mathbf{3}$ reacts at $25^{\circ} \mathrm{C}$ in acetonitrile to give $\mathbf{2}$ and CO_{2}, establishing the reversibility of eq 2 . Complex 3 reacts rapidly with CO to give 1 and CO_{2} (eq 3).

The presence of ${ }^{12} \mathrm{CO}_{3}{ }^{2-}$ in the reaction of 2 with ${ }^{13} \mathrm{CO}_{2}$ therefore is explained by reverse oxygen atom transfer from coordinated ${ }^{13} \mathrm{CO}_{3}{ }^{2-}$ to ${ }^{12} \mathrm{CO}$ to produce ${ }^{13} \mathrm{CO}_{2}$ and ${ }^{12} \mathrm{CO}_{2}$, either of which can disproportionate. Indeed, in the reaction of 3 with ${ }^{13} \mathrm{CO}\left(99 \%{ }^{13} \mathrm{C}\right)$, the products are $50 \%{ }^{13} \mathrm{CO}_{2}, 50 \%{ }^{12} \mathrm{CO}_{2}$, as determined by GC/MS, and $1\left(50 \%{ }^{13} \mathrm{CO}\right)(\mathrm{eq} \mathrm{4})$. The insertion

$$
\begin{align*}
& \mathrm{Ir}_{2}\left(\mathrm{CO}_{3}\right)(\mathrm{CO})_{2}(\text { dmpm })_{2}+{ }^{13} \mathrm{CO} \rightarrow \\
& 3 \tag{4}\\
& \quad \mathrm{Ir}_{2}(\mathrm{CO})_{2}\left({ }^{13} \mathrm{CO}\right)_{2}(\text { dmpm })_{2}+{ }^{13} \mathrm{CO}_{2}+{ }^{12} \mathrm{CO}_{2} \\
& 1: 1
\end{align*}
$$

of CO into the $\mu-\mathrm{CO}_{3} \mathrm{Ir}-\mathrm{O}$ bond of 3 to afford a $\mathrm{C}_{2} \mathrm{O}_{4}$ intermediate is implied by the oxygen atom transfer to CO . The fact that equal ${ }^{13} \mathrm{CO}_{2} /{ }^{12} \mathrm{CO}_{2}$ isotope partitioning is observed in the reaction of 3 with ${ }^{13} \mathrm{CO}$ (eq 4), suggests that the $\mathrm{C}_{2} \mathrm{O}_{4}$ intermediate rapidly collapses to 2 equiv of CO_{2} (Scheme I). ${ }^{39}$ The reverse

[^1]process, head-to-tail dimerization of CO_{2}, has often been invoked in the disproportion of CO_{2}. Oxygen atom transfer to CO from $\mathrm{CO}_{2},{ }^{11} \mathrm{NO},{ }^{33} \mathrm{NO}_{2},{ }^{34}$ and $\mathrm{O}_{2}{ }^{35}$ has been reported. The present system is the first to display facile oxygen atom transfer from carbonate. Our studies of oxygen atom transfer from $\mathbf{3}$ to other substrates are continuing.
Acknowledgment. This work was supported by the NSF (Grant CHE-8707963). We are also grateful to the NSF for support of the Chemical X-ray Diffraction Facility at Purdue. A loan of IrCl_{3} from Johnson-Matthey, Inc., is gratefully acknowledged.

Supplementary Material A vailable: Tables consisting of crystal data and data collection parameters (Table 1), positional parameters (Table 2), temperature factor expressions (Table 3), bond distances (Table 4), and bond angles (Table 5) for 3 (10 pages); a table of observed and calculated structure factors for 3 (14 pages). Ordering information is given on any current masthead page.
(40) Sharp, P. R.; Flynn, J. R. Inorg. Chem. 1987, 26, 3231.

Total Synthesis and Evaluation of
 (\pm)- \boldsymbol{N}-(tert-Butyloxycarbonyl)-CBI, (\pm)-CBI-CDPI ${ }_{1}$, and (土)-CBI-CDPI ${ }_{2}$: CC-1065 Functional Agents Incorporating the Equivalent 1,2,9,9a-Tetrahydrocycloprop [1,2-c]benz[1,2-e]indol-4one (CBI) Left-Hand Subunit

Dale L. Boger, ${ }^{\text {, la }}$ Takayoshi Ishizaki, ${ }^{16}$
Ronald J. Wysocki, Jr., and Stephen A. Munk ${ }^{1 \mathrm{c}}$
Department of Chemistry, Purdue University West Lafayette, Indiana 47907
Paul A. Kitos and Oranart Suntornwat
Department of Biochemistry, University of Kansas Lawrence, Kansas 66045-2500 Received March 30, 1989
(+)-CC-1065 (1, NSC-298223), an antitumor antibiotic isolated from cultures of Streptomyces zelensis, possesses exceptionally potent in vitro cytotoxic activity, broad spectrum antimicrobial activity, and confirmed in vivo antitumor activity. ${ }^{2-3}$ In a series of extensive investigations the site and mechanism of the (+)-CC-1065 antitumor activity have been related to its irreversible covalent alkylation of sequence-selective B-DNA minor groove sites [5^{\prime}-d(A/GNTTA) -3^{\prime} and $5^{\prime}-\mathrm{d}($ AAAAA $)-3^{\prime}$] that has been demonstrated to proceed by 3^{\prime}-adenine $N-3$ alkylation of the electrophilic cyclopropane present in the left-hand (CPI) subunit of (+)-CC-1065.4,5 The demonstration that simplified agents including $\mathrm{CDPI}_{3}{ }^{6}$ methyl ester exhibit a substantial preference for $\mathrm{A}-\mathrm{T}$ rich noncovalent minor groove binding ${ }^{7}$ attributable to preferential stabilization of a noncovalent complex within the

[^2]Scheme I

Scheme II ${ }^{a}$

${ }^{a}$ (a) 2.0 equiv of $\left(t \mathrm{BuO}_{2} \mathrm{C}\right)_{2} \mathrm{O}$, dioxane, $95^{\circ} \mathrm{C}, 3 \mathrm{~h}, 96 \%$; (b) 1.2 equiv of N-bromosuccinimide, catalytic $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{THF},-60^{\circ} \mathrm{C}, 5 \mathrm{~h}$, 98%; (c) 1.3 equiv of $\mathrm{NaH}, 3.0$ equiv of 3 -bromopropyne, $24^{\circ} \mathrm{C}, 3 \mathrm{~h}$, 100%; (d) 2.0 equiv of $\mathrm{Bu}_{3} \mathrm{SnH}, 0.2$ equiv of AIBN, benzene, $80^{\circ} \mathrm{C}, 1$ h ; (e) 6.3 equiv of $\mathrm{Me}_{2} \mathrm{~S} \cdot \mathrm{BH}_{3}, \mathrm{THF}, 0-25^{\circ} \mathrm{C}, 3 \mathrm{~h} ; 2 \mathrm{~N} \mathrm{NaOH}, 30 \%$ $\mathrm{H}_{2} \mathrm{O}_{2}, 0-25^{\circ} \mathrm{C}, \mathrm{I} \mathrm{h}, 45^{\circ} \mathrm{C}, 20 \mathrm{~min}, 62 \%$ from 9 ; (f) 2.0 equiv of $\mathrm{Ph}_{3} \mathrm{P}$, 6 equiv of $\mathrm{CCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 24^{\circ} \mathrm{C}, 10 \mathrm{~h}, 99 \%$; (g) 25% aqueous $\mathrm{HCO}_{2} \mathrm{NH}_{4} / \mathrm{THF} 1: 5,10 \% \mathrm{Pd} / \mathrm{C}, 0{ }^{\circ} \mathrm{C}, 2.5 \mathrm{~h}, 97 \%$; (h) 3 equiv of $\mathrm{NaH}, \mathrm{THF}, 24^{\circ} \mathrm{C}, 2 \mathrm{~h}, 93 \%$; (i) 3 N anhydrous $\mathrm{HCl} / \mathrm{EtOAc}, 24^{\circ} \mathrm{C}$, $10 \mathrm{~min}, 100 \%$; (j) for 17,3 equiv of EDCI, 1.0 equiv of 15,5 equiv of $\mathrm{NaHCO} \mathrm{N}_{3}, \mathrm{DMF}, 24^{\circ} \mathrm{C}, 3 \mathrm{~h}, 86 \%$; for 18,3 equiv of EDCI, 1.0 equiv of 16 , DMF, $24^{\circ} \mathrm{C}, 5 \mathrm{~h}, 78 \%$; (k) for 4,5 equiv of $\mathrm{NaH}, \mathrm{THF}, 24^{\circ} \mathrm{C}$, $2 \mathrm{~h}, 74 \%$; for 5,2 equiv of $\mathrm{NaH}, 2: 1 \mathrm{THF}-\mathrm{DMF}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 84 \%$.
narrower, sterically more accessible A-T rich minor groove ${ }^{8}$ (accessible hydrophobic binding) has suggested that CC-1065 is best represented as a selective ${ }^{9}$ alkylating agent superimposed on the CDPI_{3} skeleton and derives its properties in part from the effective delivery of a selective alkylating agent to accessible adenine N-3 alkylation sites. The additional demonstration that agents possessing the exceptionally reactive, parent $1,2,7,7 \mathrm{a}-$ tetrahydrocycloprop $[1,2-c]$ indol-4-one (CI) left-hand subunit, e.g., CI-CDPI $(x=1,2),{ }_{x}$ or the unnatural enantiomer of the CC-1065 left-hand subunit (CPI), e.g., (-)-CPI-CDPI ${ }^{11,12}$ and

[^3]
[^0]: (33) Haymore, B. L.; Ibers, J. A. J. Am. Chem. Soc. 1974., 96, 3325. (34) Feltham, R. D.; Kriege, J. C. J. Am. Chem. Soc. 1979, $101,5064$. Doughty, D. T.; Gordon, G.; Stewart, R. P., Jr. J. Am. Chem. Soc. 1979, 101, 2645.
 (35) Lawson, H. J.; Atwood, J. D. J. Am. Chem. Soc. 1988, 110, 3680.
 (36) Complex 3 was prepared from 2 and $\mathrm{CO}_{2}(\mathrm{l})$ in a LECO-MRA-114R pressure reactor at $25^{\circ} \mathrm{C}$. Typically, 3 L of CO_{2} gas was condensed into a $5-\mathrm{mL}$ reactor containing $0.12 \mathrm{~g}(0.16 \mathrm{mmol})$ of 2 , resulting in an average pressure of 1700 psi . The mixture was vented and then opened in an inertatmosphere box to collect solid products. Solids were washed with $\sim 10 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$ followed by $\sim 1 \mathrm{~mL}$ of toluene to remove unreacted 2 and 1 , formed as a coproduct. $\mathrm{Ir}_{2}\left(\mathrm{CO}_{3}\right)(\mathrm{CO})_{2}(\mathrm{dmpm})_{2}(3)$ was dried under vacuum to yield $0.051 \mathrm{~g}(41 \%)$ of purple solids. X-ray quality crystals of 3 were obtained by the diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into an acetonitrile solution of 3. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{P}_{4} \mathrm{O}_{5} \mathrm{Ir}_{2}: \mathrm{C}, 20.21 ; \mathrm{H}, 3.66$. Found: $\mathrm{C}, 19.53 ; \mathrm{H}, 4.16 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 3.32\left(\mathrm{~m}, J_{\mathrm{PH}}=4.0 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.76(\mathrm{~s}, 24 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta-6.2(\mathrm{~s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 177\left(\mathrm{~s},{ }^{13} \mathrm{CO}\right), 164(\mathrm{~s}$, ${ }^{13} \mathrm{CO}_{3}$). IR (KBr): $\nu(\mathrm{CO}) 1942(\mathrm{~s}), 1920(\mathrm{sh}), 1602(\mathrm{sh}), 1561(\mathrm{~s}), 1257(\mathrm{~m})$; $\nu(\mathrm{P}-\mathrm{C}) 941$ (s).
 (37) Crystal data for $3 \cdot \mathrm{MeCN}: \mathrm{Ir}_{2} \mathrm{P}_{4} \mathrm{O}_{5} \mathrm{NC}_{15} \mathrm{H}_{31}, \mathrm{fw}=813.71$, monoclinic, space group $P 2_{1} / n$ (No. 14), $a=11.823$ (2) $\AA, b=14.166$ (3) $\AA, c=14.807$ (4) $\AA, \beta=96.13$ (2) ${ }^{\circ}, V=2465$ (2) $\AA^{3}, Z=4, d_{\text {calc }}=2.192 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was solved by mULTAN least-squares Fourier methods and was refined to R and R_{w} values of 0.041 and 0.047 for 214 variables and 1875 unique observations with $I>3 \sigma(\mathrm{l})$ with Mo $\mathrm{K} \alpha$ radiation. Data were corrected for absorption empirically.

[^1]: (38) The $\nu\left({ }^{13} \mathrm{CO}\right)$ and $\nu\left({ }^{12} \mathrm{CO}\right)$ bands of CO and $\mathrm{CO}_{3}{ }^{2-}$ ligands in complex 3 do not appear to be mixed appreciably. The relative intensities of all $\nu\left({ }^{13} \mathrm{CO}\right)$ and $\nu\left({ }^{12} \mathrm{CO}\right)$ bands in the IR spectrum of 3 are directly proportional to the total ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ ratio. Moreover, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR verifies incorporation of ${ }^{13} \mathrm{C}$ into both CO and $\mathrm{CO}_{3}{ }^{2-}$.
 (39) A $\mu-\mathrm{C}(\mathrm{O}) \mathrm{OC}(\mathrm{O})$ intermediate formed by CO_{2} insertion with 2^{18} is also possible but is not consistent with the formation of carbonate. An $\mathrm{Ir}_{2}-$ (μ-O) intermediate ${ }^{40}$ has been considered but eliminated on the grounds that the $\mu-\mathrm{CO}_{3}{ }^{2-}$ carbon of 3 does not equilibrate with ${ }^{13} \mathrm{CO}_{2}$.

[^2]: (1) (a) National Institutes of Health career development award recipient, 1983-1988 (CA 01134), Alfred P. Sloan fellow, 1985-1989. (b) On leave from Kyorin Pharmaceutical Co., Ltd., Tochigi, Japan. (c) American Cancer Society postdoctoral fellow (ACS no. PF-3311).
 (2) Reynolds, V. L.; McGovren, J. P.; Hurley, L. H. J. Antibiot. 1986, 39, 319. Hurley, L. H.; Needham-VanDevanter, D. R. Acc. Chem. Res. 1986 19, 230.
 (3) Boger, D. L.; Coleman, R. S. Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1989; Vol. 3.
 (4) Wierenga, W.; Bhuyan, B. K.; Kelly, R. C.; Krueger, W. C.; Li, L. H.; McGovren, J. P.; Swenson, D. H.; Warpehoski, M. A. Adv. Enzyme Regul. 1986, 25, 141.
 (5) Warpehoski, M. A.; Gebhard, I.; Kelly, R. C.; Krueger, W. C.; Li, L. H.; McGovren, J. P.; Prairie, M. D.; Wicnienski, N.; Wierenga, W. J. Med. Chem. 1988, 31, 590
 (6) Boger, D. L.; Coleman, R. S.; Invergo, B. J. J. Org. Chem. 1987, 52, 1521.
 (7) Boger, D. L.; Coleman, R. S.; Invergo, B. J.; Zarrinmayeh, H.; Kitos, P. A.; Thompson, S. C.; Leong, T.; McLaughlin, L. W. Chem. Biol. Interact., in press. CDPl_{3} methyl ester has been shown to exhibit a $2.6-2.2 \mathrm{kcal}$ preference for minor groove binding to poly[dA]•poly[dT] and poly[d(AT) $] \cdot \operatorname{poly}[\mathrm{d}(\mathrm{A}-\mathrm{T})]$ versus poly[dG]•poly[dC].

[^3]: (8) Nelson, H. C. M.; Finch, J. T.; Luisi, B. F.; Klug, A. Nature (London) 1987, 330, 221. Coll, M.; Frederick, C. A.; Wang, A. H.-J.; Rich, A. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 8385. Coll, M.; Aymami, J.; van der Marel, G. A.; van Boom, J. H.; Rich, A.; Wang, A. H.-J. Biochemistry 1989, 28, 310. (9) Hurley, L. H.; Lee, C.-S.; McGovren, J. P.; Warpehoski, M. A.; Mitchell, M. A.; Kelly, R. C.; Aristoff, P. A. Biochemistry 1988, 27, 3886.
 (10) Boger, D. L.; Wysocki, R. J., Jr. J. Org. Chem. 1989, 54, 1238.
 (11) Boger, D. L.; Coleman, R. S. J. Am. Chem. Soc. 1988, 110, 4796.
 (12) Boger, D. L.; Munk, S. A.; Bina, M., unpublished observations, Supplementary Material.

